The importance of the Speed-Torque Gradient in DC Motor Sizing

March 29, 2019

By: Warren Osak, CEO/Founder of Electromate

Often overlooked when sizing DC motors is the Speed-Torque Gradient.

The Speed-Torque Gradient is defined as  Δn / ΔM [rpm/mNm] .

The speed / torque gradient is an indicator of a motor’s performance. The smaller the value, the more powerful the motor and consequently the less motor speed varies with load variations. It is based on the quotient of ideal no-load speed and ideal stall torque.

The speed torque-gradient can be considered a measure of the motor strength, which is defined by motor type and size and not the winding selected. Basically it’s how much speed drop the motor will have for each 1mNm of torque applied.

In the figure above, enhancing the load torque leads to a linear reduction of the speed. Thus it becomes clear what the meaning of Δn/ΔM is: It’s the gradient of the speed-torque line.

Related Articles



Editor’s Pick: Featured Article

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s scalable engineering software, u-control 2000, adapts individually to your requirements. And, the u-control is powerful, compact and fully compatible with Weidmüller’s I/O system u-remote. This article looks at what makes u-control the heart of your automation.

Programmable logic controllers (PLCs) are one of the main components of any automated system. A typical control system has inputs, outputs, controllers (i.e., PLCs), and some type of human interaction with the system, a human machine interface (HMI), for example.

Read More



Latest Articles

  • The Power of OMRON’s Sysmac Studio: Unify Automation and Integrate Safety

    November 7, 2025 By Omron Automation Industry moves fast. Outpace obsolescence with OMRON’s Sysmac Studio. Designed to empower operations from the edge to the cloud, it unifies automation by prioritizing safety and security. Built for today, ready for the future. Today, the factory floor faces pressure from suppliers, consumers, competition, and emerging technologies. Operation teams… Read More…

  • NVIDIA 800 VDC Architecture Will Power the Next Generation of AI Factories

    November 4, 2025 By Mathias Blake, Martin Hsu, Ivan Goldwasser, Harry Petty and Jared Huntington The exponential growth of AI workloads is increasing data centre power demands. Traditional 54 V in-rack power distribution, designed for kilowatt (KW)-scale racks, isn’t designed to support the megawatt (MW)-scale racks coming soon to modern AI factories.  NVIDIA is leading the transition to 800 VDC data… Read More…