ABB System Enables Key Climate Research Expedition

March 31, 2020

The research expedition’s main purpose was to improve collection of onsite observations in the central Arctic Ocean, such as information on how warm and dynamic the ocean is under the ice. The data collected will be used to check whether climate models are able to reproduce the observed changes, which will in turn be used to improve climate projections.

Read all about the research mission enabled by the 104-meter icebreaking offshore patrol vessel equipped with two 5MW Azipod® propulsion units here.

Figure_2.png

The navigation of the ship required extensive analysis of high resolution Earth Observation data from several providers and satellites e.g. Synthetic Aperture Radar data from Sentinel 1, Radarsat 2, and Cosmo Skymed. AMSR2 passive microwave data were used to observe the ice concentration (color coded). The optical images (e.g. Terra Modis) were, under cloud free conditions, used as support to detect open leads and ridges. Automatic Identification System (AIS) was used to observe the details of changes in ice drift, both via satellites and buoys deployed around the ship. The photo shows the KV Svalbard with the deployment of ice tethered profiler (ITP) buoy at the North Pole in the foreground. The ITP autonomously measures oceanographic profiles while it drift with the ice. These data are sent back to scientists at Woods Hole Oceanographic Institution in near real time via IRIDIUM.

The geometry of the 2019–2020 Coordinated Arctic Acoustic Thermometry Experiment (CAATEX) and the Integrated Arctic Observation System (INTAROS) experiments. The acoustic moorings at SIO1 and NERSC1 carry both source and receivers. There are four vertical receiving arrays: SIO2, SIO3, NERSC2, and NERSC3. The mooring at NERSC4 (green) has conventional oceanographic instrumentation to measure temperature, salinity, and currents. The SIO moorings were deployed by Scripps Institution of Oceanography using the US Coast Guard ice breaker Healy. The sea-ice concentration on 31 October 2019 is from the Advanced Microwave Scanning Radiometer 2 (AMSR2) dataset provided by the University of Bremen (Spreen et al., 2008).

Source

Related Articles



Editor’s Pick: Featured Article

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s scalable engineering software, u-control 2000, adapts individually to your requirements. And, the u-control is powerful, compact and fully compatible with Weidmüller’s I/O system u-remote. This article looks at what makes u-control the heart of your automation.

Programmable logic controllers (PLCs) are one of the main components of any automated system. A typical control system has inputs, outputs, controllers (i.e., PLCs), and some type of human interaction with the system, a human machine interface (HMI), for example.

Read More



Latest Articles

  • Why Use Low-Consumption Contactors in Your Motor Control Systems?

    April 15, 2025 By Tiffany Moore Organizations are under more pressure than ever to improve sustainability metrics. How can you help them succeed — and win more business in the process?    Building motor control systems with more sustainable parts is one piece of the puzzle. Control panel builders, system integrators, and design firms have an… Read More…

  • The Long Cable Run Dilemma: Where Should You Install the VFD?

    April 15, 2025 By Damien Herwegh Sophia, a dedicated electrical engineer in a large industrial complex, has been tasked with installing a drive system where the motor is located hundreds of meters away from the control room. Like many engineers before her, she considers the usual question: Should I place the drive in the electrical… Read More…