Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

DCS-23-Lafert-HPSSeriesMagnetMotor-400.jpg

March 16, 2021

Hybrid Design for Hybrid Applications

Lafert presents the HPS Series of permanent magnet motors for automated equipment applications where induction motor performance falls short of the mark, or servo motor cost and complexity is impractical. It’s no accident that HPS Series motors are well suited to filling this motor capability gap; the motor construction integrates the cost-effective induction motor stator housing and stator winding with high-performance permanent magnet servo motor rotor technology. The hybrid design is a highly efficient synchronous motor which outperforms induction motors and offers tremendous value for speed control applications. An industry leader in permanent magnet motor technology, Lafert has proudly manufactured HPS Series Motors for over fifteen years. HPS motors are available from stock with standard power ratings to 50 HP for 230, 460, 575 V input. Mounting options include modular base mouths with or without standarized IEC (B5 or B14), and NEMA (C-Face) flanges. 

Reduced Losses, Increased Reliability

Energy efficiency has not been a traditional performance consideration for motion control applications, but efficiency has direct reliability and performance implications for motors and systems. All HPS Series motors exceed the current requirements for induction motor efficiency, NEMA Premium®, with motor efficiency performance at or above the “Super Premium” (IE4) level. This increased energy efficiency is due to the permanent magnet rotor construction, which reduces the electrical rotor losses to zero. Induction motor rotor losses are defined as the electrical power converted to heat by current flow (I2R) in the rotor, which typically accounts for 10 – 15% of total losses. Eliminating the rotor losses delivers the dual benefit of increasing energy efficiency and reducing the amount of heat generated by the motor. In simple terms: HPS Series motors create less heat per unit of mechanical power delivered to the load. This explains the reduced thermal rise and thermal time constant, and increased maximum ambient temperature and overload capability of HPS Series motors. The industry rule of thumb, which states that each 10°C rise in motor winding temperature reduces insulation life by half, establishes the case for correlation of reduced HPS Series motor losses with longer field service life. With less waste heat to be eliminated from the enclosure, HPS motors require less material volume and surface area to remain cool. Space and weight savings will vary but in the general case reductions on the order of 50 % can be expected in comparison to equivalently rated induction motors.

High Performance, Without Feedback

Energy efficiency has not been a traditional performance consideration for motion control applications, but efficiency has direct reliability and performance implications for motors and systems. All HPS Series motors exceed the current requirements for induction motor efficiency, NEMA Premium®, with motor efficiency performance at or above the “Super Premium” (IE4) level. This increased energy efficiency is due to the permanent magnet rotor construction, which reduces the electrical rotor losses to zero. Induction motor rotor losses are defined as the electrical power converted to heat by current flow (I2R) in the rotor, which typically accounts for 10 – 15% of total losses. Eliminating the rotor losses delivers the dual benefit of increasing energy efficiency and reducing the amount of heat generated by the motor. In simple terms: HPS Series motors create less heat per unit of mechanical power delivered to the load. This explains the reduced thermal rise and thermal time constant, and increased maximum ambient temperature and overload capability of HPS Series motors. The industry rule of thumb, which states that each 10°C rise in motor winding temperature reduces insulation life by half, establishes the case for correlation of reduced HPS Series motor losses with longer field service life. With less waste heat to be eliminated from the enclosure, HPS motors require less material volume and surface area to remain cool. Space and weight savings will vary but in the general case reductions on the order of 50 % can be expected in comparison to equivalently rated induction motors.

Leveraging Lineage, Learning More

In addition to synchronous operation, HPS Series motors inherits two characteristics from the servo motor with performance implications for motion applications. First, the reduced weight and dimensions of permanent magnet rotors yield higher HPS torque-to-inertia ratios than induction motors. Higher torque-to-inertia ratios are desirable because they supports higher system dynamic response and repeatability. Second, the synchronous motor torque-producing mechanism enables the flat torque curve across a wide speed range and a short-time 300% peak torque capability. Contact us to learn how and why the unique construction and capabilities of HPS Series motors can drive top performance from your next motion control application.

Source


Editor's Pick: Featured Article


DCS-24-HELUKABEL-VFDs-400.jpg

The variable frequency drive (VFD) cable business has become a very large market for cable manufactures in the last 20 years. In the past, standard AC motors had the complexity of a squirrel cage motor – just get power and it would run. The first silicon controlled rectifier (SCR) was developed by Bell Labs/GE in 1958 to vary the speed of DC electric motors used in various applications. Since then there have been motor speed control technology evolving from large-scale integration (LSI), gate turn-off thyristor (GTO), pulse-width modulation (PWM), insulated-gate bipolar transistor (IGBT), and space vector pulse-width modulation (SVPWM). These new forms of power conversion to support speed control in VFD motors has caused the demand on the cables to change as well, which has led to many new cable options.


Read More


 

Latest Articles

  • Prev
Join in with Rittal to sharpen up your IT & Industrial infrastructure, as well as your mission ...
Certified Electrical Safety Engineer (CESE) is an internationally recognized professional ...
Common in most industrial settings, electric motors are broadly grouped as those driven by ...
Machine safety is one of the most important requirements in factory automation and it can also be ...
Allied Electronics & Automation has strengthened its robust roster of more than 500 world-class ...
ABB has recently been awarded a major turnkey contract by Statkraft, Europe’s largest generator of ...
Traditionally, many industrial companies have relied on their service providers to help keep their ...
Some ten billion bearings are manufactured each year and, given the harsh conditions to which they ...
Keeping workers safe and keeping the production line going may seem contradictory, but in most ...
The design of HVAC systems poses unique challenges for things like motor control and circuit ...

DCS-24-Epiroc-DigitalTransformation-400.jpg

As the mining business adapts to changing technological trends in the market, Epiroc’s Canadian operations have introduced Regional Application Center (RAC) teams to assist in this new digital transformation.

Team of experts that supports digital transformation

Across the board, mining projects are continually pushing for increased production while prioritizing safety. With this in mind, Epiroc has assembled specialized automation and digitalization support systems in strategic locations across the globe to help improve customer processes and boost productivity. The result is a heightened level of production that keeps workers out of danger zones on site while providing enhanced strategic direction for customers. Interoperability improvements have reduced variability and allow project planners to move towards their targets with renewed confidence. 

Read More


 

Latest News

  • Prev
Machine safety is one of the most important requirements in factory automation and it can also be ...
Allied Electronics & Automation has strengthened its robust roster of more than 500 world-class ...
Keeping workers safe and keeping the production line going may seem contradictory, but in most ...
The design of HVAC systems poses unique challenges for things like motor control and circuit ...
ABB has provided electrification, connected control and operations management systems, ...
With interest in driverless cars increasing all the time, and with car manufacturers looking for ...
Tundra was recently excited to announce that they’re now a part of the Wajax Corporation. Be sure ...
In October of 2020, orders in the mechanical and plant engineering sector matched the previous ...
Kerrwil Publications Great Place to Work. Certified December 2019 - December 2020

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2021 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil