

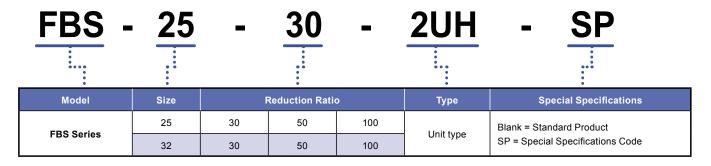
Harmonic Drive®

Large, Hollow-Shaft FBS-2UH Series Speed Reducer

Compact Design

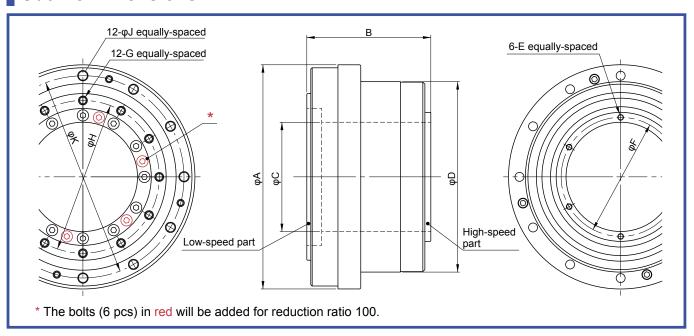
This new Harmonic Drive® gear features a large, hollow shaft with a compact outer diameter. An extra large hollow shaft is ideal for robots and machines requiring complex cabling to pass through the axis of rotation. The new gear design features Harmonic Drive's "S" tooth profile for optimal tooth engagement resulting in high torque, high-torsional stiffness, long life and smooth rotation. The new FBS Series is available in two sizes (25, 32) and three ratios (30:1, 50:1, 100:1).

Features

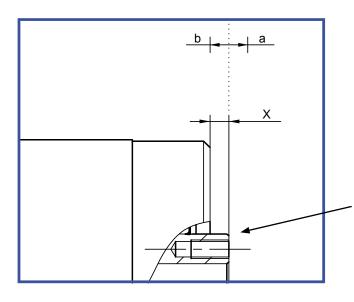

- Extra large hollow-shaft diameter is our largest yet for a standard product
- Compact dimensions for use in robotics
- Outer diameter and hollow bore optimized for design flexibility and performance

Ratio of the Hollow-Shaft Diameter to the Outer Diameter

Size	Hollow-Shaft Diameter	Outer Diameter	Ratio
25	41 mm	93 mm	44%
32	55.1 mm	113 mm	49%


Ordering Code

Rating Table


Size	Reduction Ratio		ue at input 000 rpm	Limit for peak t	repeated orque		average que	Limit for m		Allowable maximum input speed	Limit for average input speed	Moment of inertia
	Ratio	Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	rpm	rpm	kgcm²
	30	15	1.5	25	2.5	24	2.4	50	5.1			
25	50	22	2.2	47	4.8	35	3.6	93	9.5		2500	1.0
	100	37	3.8	70	7.1	59	6.0	100	10.2			
	30	30	3.1	48	4.9	48	4.9	96	9.8	3600		
32	50	43	4.4	92	9.4	67	6.8	151	15.4		2300	3.3
	100	56	5.7	106	10.8	89	9.1	151	15.4			

Outline Dimensions

(Unit: mm)

Symbol Size	φΑ	В	φС	φD	Е	φF	G	φН	φJ	φΚ	Weight (kg)
25	93	53.1	41	78	M3	45.5	М3	61.4	3.5	84	1.3
32	113	62.5	55.1	96	M3	60	M4	77	4.5	102	2.2

■ Input Shaft (Wave generator axial clearance)

(Unit: mm)

0:	Dimension V	Axial Cl	earance
Size	Dimension X	а	b
25	3	0.1 to 0.7	0.0 to 0.6
32	3	0.2 to 0.8	0.1 to 0.7

Input shaft moves back and forth during normal use. See Application on page 11.

Positional Accuracy

Reduction Ratio	Size	25	32
20	x 10⁻⁴rad	8.7	8.7
30	arc-min	3	3
50	x 10 ⁻⁴ rad	5.8	5.8
50	arc-min	2	2
400	x 10⁻⁴rad	5.8	5.8
100	arc-min	2	2

Hysteresis Loss

Reduction Ratio	Size	25	32
30	x 10⁻⁴rad	8.7	8.7
30	arc-min	3	3
50	x 10 ⁻⁴ rad	5.8	5.8
50	arc-min	2	2
400	x 10 ⁻⁴ rad	2.9	2.9
100	arc-min	1	1

Torsional Stiffness

		Size	25	32
Symbol			23	32
T1		Nm	7.4	16
'	•	kgfm	0.75	1.6
T2	2	Nm	26	55
12		kgfm	2.7	5.6
	K1	x 10⁴Nm/rad	1.3	2.1
	KI	kgfm/arc-min	0.40	0.64
	K2	x 10⁴Nm/rad	1.3	2.4
	K2	kgfm/arc-min	0.40	0.71
Reduction Ratio	K3	x 10⁴Nm/rad	1.6	2.9
30	N3	kgfm/arc-min	0.48	0.87
	04	x 10 ⁻⁴ rad	5.4	7.4
	θ1	arc min	1.9	2.5
	00	x 10⁴rad	19	24
	θ2	arc-min	6.6	8.2
	K1	x 10⁴Nm/rad	1.9	3.5
	K1	kgfm/arc-min	0.56	1.0
	K2	x 10⁴Nm/rad	2.0	3.7
		kgfm/arc-min	0.60	1.1
Reduction Ratio		x 10⁴Nm/rad	2.3	4.3
50	K3	kgfm/arc-min	0.69	1.3
	θ1	x 10 ⁻⁴ rad	3.9	4.5
	91	arc-min	1.4	1.6
	00	x 10 ⁻⁴ rad	13	15
	θ2	arc-min	4.5	5.2
	1/4	x 10⁴Nm/rad	3.2	6.5
	K1	kgfm/arc-min	.0.94	1.9
	14.0	x 10⁴Nm/rad	3.2	6.5
	K2	kgfm/arc-min	0.94	1.9
Reduction Ratio		x 10⁴Nm/rad	3.2	6.6
100	K3	kgfm/arc-min	0.94	2.0
	04	x 10 ⁻⁴ rad	2.0	2.2
	θ1	arc-min	0.7	0.8
	00	x 10-⁴rad	7.8	8.3
	θ2	arc-min	2.7	2.9
* This table shows the ref	erence values. The min	imum value is approximately 70% of the displayed	value	

^{*} This table shows the reference values. The minimum value is approximately 70% of the displayed value

Starting Torque

(Unit:Ncm)

Size Reduction Ratio	25	32
30	25	54
50	15	31
100	11	20

Back-Driving Torque

(Unit: Nm)

Size Reduction Ratio	25	32
30	11	23
50	9	18
100	13	22

Ratcheting Torque

(Unit: Nm)

Size Reduction Ratio	25	32
30	170	270
50	200	410
100	270	510

Static Torque Limit

The static torque limit is defined as the maximum allowable torque that can be applied to the output in a back drive mode with the input Wave Generator locked.

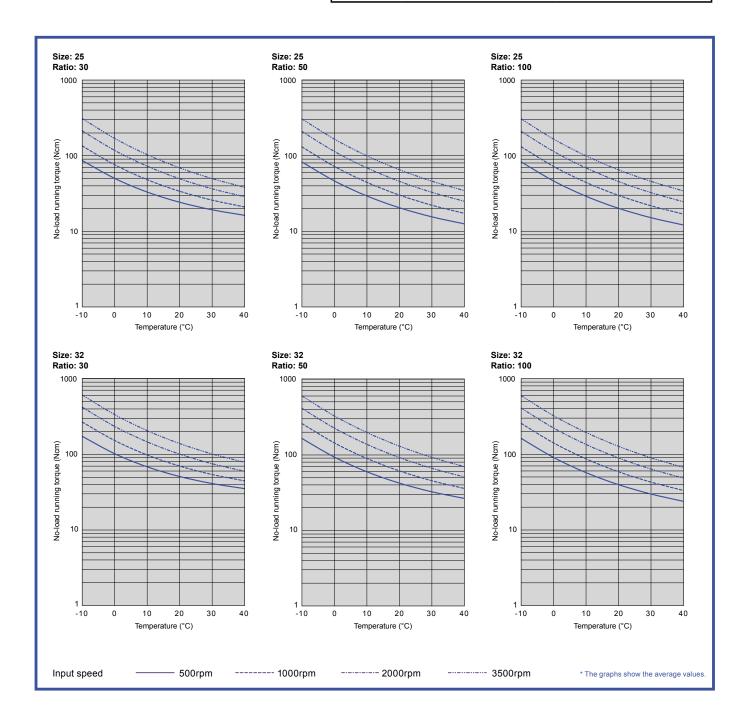
(Unit: Nm)

Size Reduction Ratio	25	32
30		
50	370	730
100		

^{*} For details of terms, refer to the technical material in the Harmonic Drive® reducer catalog.

Sold & Serviced By:

ELECTROMATE


Tell Free Phone (977) SERVICES

No-Load Running Torque

No-load running torque is the torque which is required to rotate the input side (high-speed side), when there is no load on the output side (low-speed side).

Measuring Condition

Lubrication	Speed Reducer	Main Bearing				
Lubrication	Harmonic Grease® SK-1A	Harmonic Grease® 4B No.2				
Torque value is measured after 2 hours at 2000 rpm input						

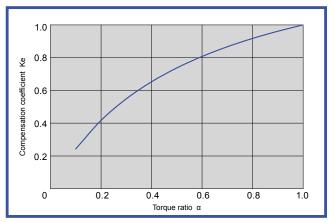
Sold & Serviced By:

Efficiency

The efficiency is lowered depending on the load torque. Obtain efficiency compensation coefficient Ke from the graph, and check the value through the following formula.

- *1 The efficiency compensation coefficient is the average value when the grease temperature is approximately 30°C.
- *2 When load torque is larger than rated torque, efficiency compensation coefficient Ke = 1.

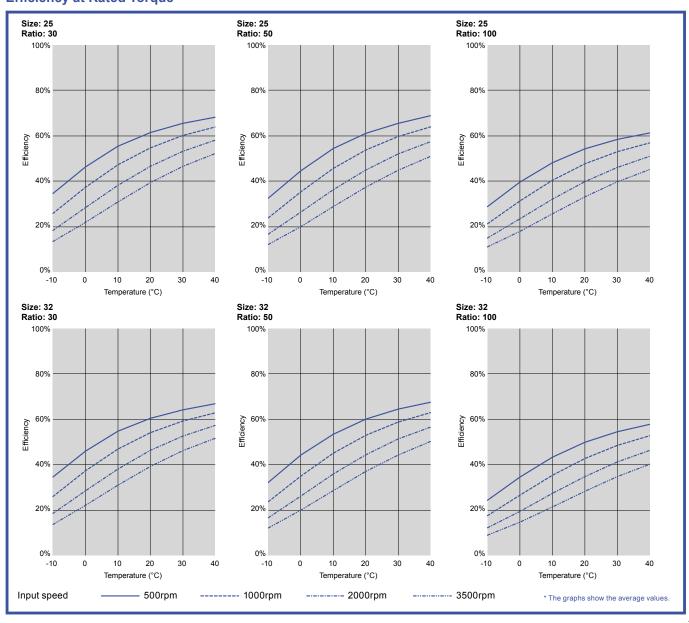
Efficiency compensation coefficient: Ke


Efficiency at rated torque: ηR

Efficiency depending on the load torque: η

 $\eta = \text{Ke } x \eta R$

Torque Ratio
$$\alpha = \frac{\text{Load torque}}{\text{Rated torque}}$$

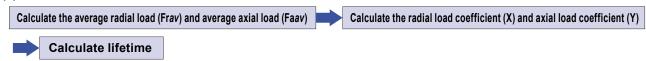

Efficiency Compensation Coefficient

Measuring Condition

Lubuinatina	Speed Reducer	cer Main Bearing			
Lubrication	Harmonic Grease® SK-1A	Harmonic Grease® 4B No.2			
Torque value is measured after 2 hours at 2000 rpm input					

Efficiency at Rated Torque

Specifications of the Main Bearing

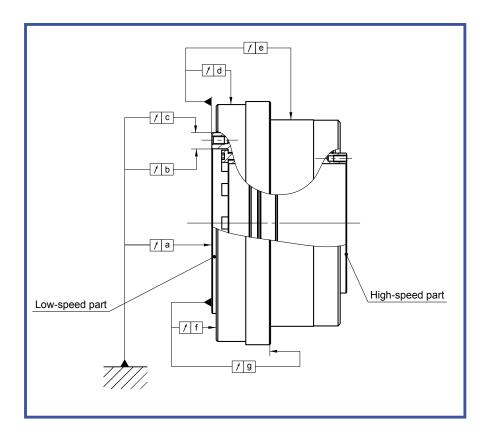

A precision cross roller bearing is built in to directly support the external load (output flange). For maximum performance, check the maximum moment load, life of the cross-roller bearing, and static safety coefficient.

Procedure for Checking

(1) Check the maximum moment load (M max)

(2) Check the life

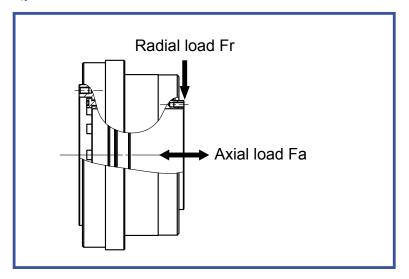
(3) Check the static safety coefficient

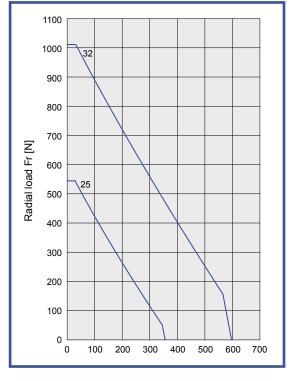


Main Bearing Specifications

	Pitch Circle	Offset		Basic ra	ted load		Allowable moment load Mc		Moment stiffness Km	
Size	dp	R		amic rated d C		atic rated d C0				
	m	m	×10² N	kgf	×10 ² N	kgf	Nm	kgfm	x 10⁴ Nm/rad	kgfm/arc min
25	0.070	0.011	73	744	110	1122	93	9.5	21	6.2
32	0.086	0.0121	109	1111	179	1825	129	13.2	31	9.2

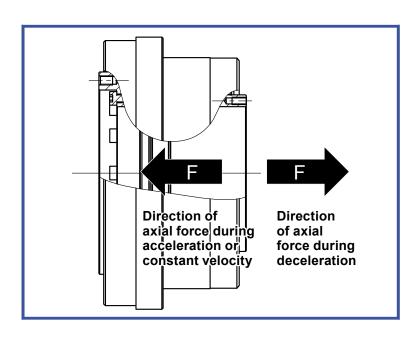
Mechanical Accuracy


Size Symbol	25	32
а	0.015	0.015
b	0.010	0.010
С	0.010	0.010
d	0.010	0.013
е	0.070	0.073
f	0.010	0.010
g	0.018	0.024



Allowable Load for the Input Shaft

Two bearings support the input shaft. The following graph shows the maximum allowable radial load and axial load for each size.


Note that the values on the graph are the examples when the average input speed is 2000 rpm and basic rating life L_{10} is 5,000 hours.

Axial Force of the Input Shaft

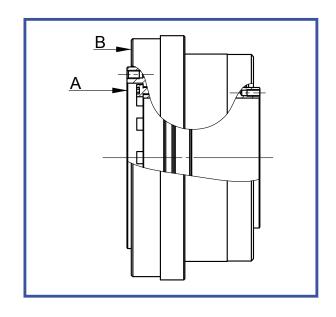
The input shaft moves back and forth during use. The amount of axial movement is defined on page 3. If the input shaft axial movement is constrained, a force will be transferred to the customer's structure.

Reduction Ratio	Formula			
30	$F = 5.2 x \frac{T}{D} x 0.07 x tan 32^{\circ}$			
50 or more	F = 5.2 x T D x 0.07 x tan 30°			

F = Axial force (N)

T = Output torque (Nm)

 $D = (Size) \times 0.00254 (m)$



Installation and Transmission Torque

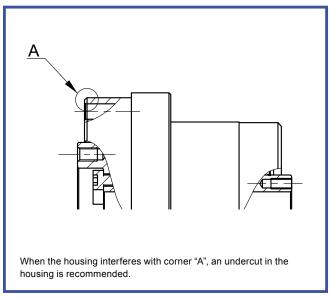
Installation Accuracy

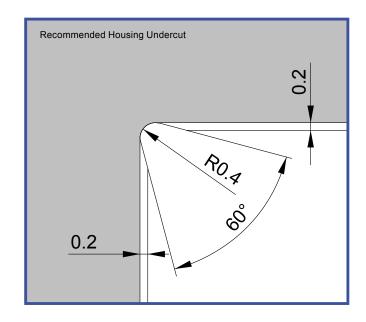
For peak performance of the gear, it is essential that the following tolerances be observed when assembly is complete. Pay careful attention to the following points and maintain the recommended assembly tolerances.

- Contamination due to foreign matter
- Burrs, raised surfaces and location around the tap area of the mounting holes
- Insufficient chamfering on the mounting pilot joint
- Insufficient radii on the mounting pilot joint

Installation and Torque Transmission Capacity on side A

Item	Size	25	32
Number of bolts		12	12
Bolt size		M3	M4
Mounting P.C.D	mm	61.4	77
Bolt tightening torque	Nm	2.0	4.5
	kgfm	0.2	0.46
Bolt transmission torque	Nm	154	324
	kgfm	15.7	33.1


- 1. The material of the thread must withstand the clamp torque.
 2. Recommended bolt: JIS B 1176 socket head cap screw / Strength range : JIS B 1051 over 12.9
 3. Torque coefficient: K=0.2
 4. Clamp coefficient: A=1.4
 5. Tightening friction coefficient μ=0.15


Installation and Torque Transmission Capacity on side B

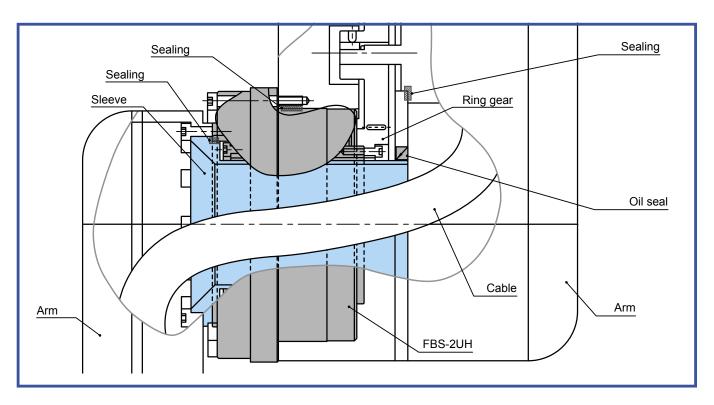
Item	Size	25	32
Number of bolts		12	12
Bolt size		M3	M4
Mounting P.C.D	mm	84	102
Bolt tightening	Nm	2.0	4.5
torque	kgfm	0.2	0.46
Bolt transmission torque	Nm	210	431
	kgfm	21	44

- 1. The material of the thread must withstand the clamp torque.
 2. Recommended bolt: JIS B 1176 socket head cap screw / Strength range : JIS B 1051 over 12.9
 3. Torque coefficient: K=0.2
 4. Clamp coefficient: A=1.4
 5. Tightening friction coefficient μ=0.15

■ Recessing of the Mounting Pilot

Lubrication

Grease lubrication is standard for the FBS-2UH. There is no need to add or apply grease upon installation since the products are shipped with the grease applied.


Lubrication part	Speed Reducer	Main Bearing			
Grease	Harmonic Grease® SK-1A	Harmonic Grease® 4B No.2			
Manufacturer	Harmonic Drive Systems Inc.				
Base oil	Purified mineral oil	Synthetic hydrocarbon oil			
Thickener	Lithium soap base	Urea			
Base Viscosity cSt (25°C)	265 to 295	290 to 320			
Drop point	197°C	247°C			
Appearance	Yellow	Light yellow			

For details on lubrication, please see the "Engineering Data" in the Reducer Catalog.

Application

FBS-2UH is not equipped with a rotary shaft seal on the input shaft. The customer must add features to prevent grease leakage.

The following figure shows an example of the seals required to prevent grease leakage. In the example the FBS is driven by a servomotor through two spur gears.

Sold & Serviced By:

